spacer

Future projects

ISRO plans to launch a number of new-generation Earth Observation Satellites in the near future. It will also undertake the development of new launch vehicles and spacecraft. ISRO has stated that it will send unmanned missions to Mars and Near-Earth Objects. ISRO has planned 58 missions during 2012-17; 33 satellites missions in next two years and 25 launch vehicles missions thereafter, costing 20,000 crore (US$4 billion). Satellite Name Details INSAT-3D INSAT-3D is a meteorological satellite, planned to be launched on-board GSLV in September 2012. The satellite has many new technology elements like star sensor, micro stepping Solar Array Drive Assembly (SADA) to reduce the spacecraft disturbances and Bus Management Unit (BMU) for control and telecomm and/telemetry function. It also incorporates new features of bi-annual rotation and Image and Mirror motion compensations for improved performance of the meteorological payloads. SARAL The Satellite for ARGOS and ALTIKA (SARAL) is a joint ISRO-CNES mission and planned to be launched December 2013. The Ka band altimeter, ALTIKA, provided by CNES payload consists of a Ka-band radar altimeter, operating at 35.75 GHz. A dual frequency total power type microwave radiometer (23.8 and 37 GHz) is embedded in the altimeter to correct tropospheric effects on the altimeter measurement. Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS) on board enables precise determination of the orbit. A Laser Retroreflector Array (LRA) helps to calibrate the precise orbit determination system and the altimeter system several times throughout the mission. [42] ASTROSAT ASTROSAT is a first dedicated Indian Astronomy satellite mission, which will enable multi-wavelength observations of the celestial bodies and cosmic sources in X-ray and UV spectral bands simultaneously. The scientific payloads cover the Visible (3500–6000 A?), UV (1300–3000 A?), soft and hard X-ray regimes (0.5–8 keV; 3–80 keV). The uniqueness of ASTROSAT lies in its wide spectral coverage extending over visible, UV, soft and hard X-ray regions. GSAT-6 / INSAT-4E The primary goal of GSAT-6/INSAT-4E, which is a Multimedia broadcast satellite, is to cater to the consumer requirements of providing entertainment and information services to vehicles through Digital Multimedia consoles and to the Multimedia mobile Phones. The satellite carries a 5 spot beam BSS and 5 spot beam MSS. It will be positioned at 83° East longitude with a missio life of 12 years. GSAT-7/INSAT-4F It is a multi-band satellite carrying payloads in UHF, S-band, C-band and Ku band. The satellite weighs 2330 kg with a payload power of 2000W and mission life of 9 years. GSAT-9 GSAT-9 will carry 6 C band and 24 Ku band transponders with India coverage beam. The satellite is planned to be launched during 2011–12 with a mission life of 12 years and positioned at 48° East longitude. This I-2K satellite has a liftoff mass of 2330 kg and payload power of 2300 W. GSAT-10 GSAT-I0 will carry 12 Normal C-band, 12 Extended C-band and 12 Ku band transponders. It will also carry GPS Aided Geo Augmented Navigation (GAGAN) payload. The satellite is planned to be launched during 2011 with a mission life of 15 years and positioned at 83° East longitude. This I-3K satellite with liftoff mass of 3435 kg and payload power of 4500 W will be launched on board ARIANE-5. GSAT-11 GSAT-11 is based on I-4K bus which is under advanced stage of development. The spacecraft can generate 10–12 KW of power and can support payload power of 8KW. The payload configuration is on-going. It consists of 16 spot beams covering entire country including Andaman & Nicobar islands. The communication link to the user-end terminals operate in Ku-band while the communication link to the hubs operate in Ka-band. The payload is configured to be operated as a high data throughput satellite, to be realised in orbit in 2013 time frame. GSAT-14 GSAT-14 is intended to serve as a replacement for EDUSAT as the spacecraft is configured with 6 Ku and 6 Ext C band transponders providing India coverage beams. In addition, the spacecraft also carries Ka band beacons, which are planned to be used to carry out studies related to rain and atmospheric effects on Ka band satellite communication links in Indian region. The spacecraft weighs around 2050 kg and is planned to be launched by GSLV with indigenous cryogenic upper stage. IRNSS-1 Indian Regional Navigational Satellite System (IRNSS)-1, the first of the seven satellites of the IRNSS constellation, carries a Navigation payload and a C-band ranging transponder. The spacecraft employs an optimised I-1K structure with a power handling capability of around 1600W and a lift off mass of 1380 kg, and is designed for a nominal mission life of 7 years. The first satellite of IRNSS constellation is planned to be launched onboard PSLV during 2012–13 while the full constellation is planned to be realised during 2014 time frame.

 
spacer